您现在的位置是: 首页 > 家电品牌 家电品牌

基于plc中央空调控制系统_基于plc中央空调控制系统的设计

ysladmin 2024-06-10 人已围观

简介基于plc中央空调控制系统_基于plc中央空调控制系统的设计       现在,我将着重为大家解答有关基于plc中央空调控制系统的问题,希望我的回答能够给大家带来一些启发。关于基于plc中央空调控制系统的话题,我们开始讨论吧。1.PID与PLC控制

基于plc中央空调控制系统_基于plc中央空调控制系统的设计

       现在,我将着重为大家解答有关基于plc中央空调控制系统的问题,希望我的回答能够给大家带来一些启发。关于基于plc中央空调控制系统的话题,我们开始讨论吧。

1.PID与PLC控制的异同

2.中央空调的冷冻泵和冷却泵都是用的变频启动,也用上了PLC,但我不了解它是利用什么信号传给PLC?

3.中央空调系统原理图什么是中央空调系统

4.中央空调的实训装置包括几个部分

基于plc中央空调控制系统_基于plc中央空调控制系统的设计

PID与PLC控制的异同

       PID控制目录[隐藏]

       概述

       基本用途

       现实意义

       PID控制实现

       [编辑本段]概述

        当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。

        这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。

        PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

        PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为

        u(t)=kp(e((t)+1/TI∫e(t)dt+TD*de(t)/dt) 式中积分的上下限分别是0和t

        因此它的传递函数为:G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s)

        其中kp为比例系数; TI为积分时间常数; TD为微分时间常数

       [编辑本段]基本用途

        它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

        首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。

        其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。

        第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。

        在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。

        在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:

        如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。闭环工作时,要求在过程中插入一个测试信号。这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。

        如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。

        因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。

        PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。

        虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器

       [编辑本段]现实意义

        目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

        1、开环控制系统

        开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

        2、闭环控制系统

        闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

        3、阶跃响应

        阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。

        4、PID控制的原理和特点

        在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

        比例(P)控制

        比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

        积分(I)控制

        在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

        微分(D)控制

        在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

        5、PID控制器的参数整定

        PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

        在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

        对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3

        对于流量系统:P(%)40--100,I(分)0.1--1

        对于压力系统:P(%)30--70,I(分)0.4--3

        对于液位系统:P(%)20--80,I(分)1--5

        参数整定找最佳,从小到大顺序查

        先是比例后积分,最后再把微分加

        曲线振荡很频繁,比例度盘要放大

        曲线漂浮绕大湾,比例度盘往小扳

        曲线偏离回复慢,积分时间往下降

        曲线波动周期长,积分时间再加长

        曲线振荡频率快,先把微分降下来

        动差大来波动慢。微分时间应加长

        理想曲线两个波,前高后低4比1

        一看二调多分析,调节质量不会低

       [编辑本段]PID控制实现

        1 . PID 的反馈逻辑

        各种变频器的反馈逻辑称谓各不相同,甚至有类似的称谓而含义相反的情形。系统设计时应以所选用变频器的说明书介绍为准。所谓反馈逻辑,是指被控物理量经传感器检测到的反馈信号对变频器输出频率的控制极性。例如中央空调系统中,用回水温度控制调节变频器的输出频率和水泵电机的转速。冬天制热时,如果回水温度偏低,反馈信号减小,说明房间温度低,要求提高变频器输出频率和电机转速,加大热水的流量;而夏天制冷时,如果回水温度偏低,反馈信号减小,说明房间温度过低,可以降低变频器的输出频率和电机转速.减少冷水的流量。由上可见,同样是温度偏低,反馈信号减小,但要求变频器的频率变化方向却是相反的。这就是引入反馈逻辑的原由。几种变频器反馈逻辑的功能选择见表 1 。

        2 .打开 PID 功能

        要实现闭环的 PID 控制功能,首先应将 PID 功能预置为有效。具体方法有两种:一是通过变频器的功能参数码预置,例如,康沃 CVF-G2 系列变频器,将参数 H-48 设为 O 时,则无 PID 功能;设为 1 时为普通 PID 控制;设为 2 时为恒压供水 PID 。二是由变频器的外接多功能端子的状态决定。例如安川 CIMR-G 7A 系列变频器,如图 1 所示,在多功能输入端子 Sl-S10 中任选一个,将功能码 H1-01 ~ H1-10( 与端子 S1-S10 相对应 ) 预置为 19 ,则该端子即具有决定 PI[) 控制是否有效的功能,该端子与公共端子 SC “ ON ”时无效,“ OFF ”时有效。应注意的是.大部分变频器兼有上述两种预置方式,但有少数品牌的变频器只有其中的一种方式。

        在一些控制要求不十分严格的系统中,有时仅使用 PI 控制功能、不启动 D 功能就能满足需要,这样的系统调试过程比较简单。

        3 .目标信号与反馈信号

        欲使变频系统中的某一个物理量稳定在预期的目标值上,变频器的 PID 功能电路将反馈信号与目标信号不断地进行比较,并根据比较结果来实时地调整输出频率和电动机的转速。所以,变频器的 PID 控制至少需要两种控制信号:目标信号和反馈信号。这里所说的目标信号是某物理量预期稳定值所对应的电信号,亦称目标值或给定值;而该物理量通过传感器测量到的实际值对应的电信号称为反馈信号,亦称反馈量或当前值。 PID 控制的功能示意图见图 2 。图中有一个 PID 开关。可通过变频器的功能参数设置使 PID 功能有效或无效。 PID 功能有效时,由 PID 电路决定运行频率; PID 功能无效时,由频率设定信号决定运行频率。 PID 开关、动作选择开关和反馈信号切换开关均由功能参数的设置决定其工作状态。

        4 .目标值给定

        如何将目标值 ( 目标信号 ) 的命令信息传送给变频器,各种变频器选择了不同的方法,而归结起来大体上有如下两种方案:一是自动转换法,即变频器预置 PID 功能有效时,其开环运行时的频率给定功能自动转为目标值给定.如表 2 中的安川 CIMR-G 7A 与富士 P11S 变频器。二是通道选择法,如表 2 中的康沃 CVF-G2 、森兰 SB12 和普传 P17000 系列变频器。

        以上介绍了目标信号的输入通道,接着要确定目标值的大小。由于目标信号和反馈信号通常不是同一种物理量。难以进行直接比较,所以,大多数变频器的目标信号都用传感器量程的百分数来表示。例如,某储气罐的空气压力要求稳定在 1 . 2MPa ,压力传感器的量程为 2MPa ,则与 1 . 2MPa 对应的百分数为 60 %,目标值就是 60 %。而有的变频器的参数列表中,有与传感器量程上下限值对应的参数,例如富士 P11S 变频器,将参数 E40( 显示系数 A) 设为 2 ,即压力传感器的量程上限 2MPa :参数 E41( 显示系数 B) 设为 0 ,即量程下限为 0 ,则目标值为 1 . 2 。即压力稳定值为 1 . 2 MPa 。目标值即是预期稳定值的绝对值。

        5 .反馈信号的连接

        各种变频器都有若干个频率给定输入端,在这些输入端子中,如果已经确定一个为目标信号的输入通道,则其他输入端子均可作为反馈信号的输入端。可通过相应的功能参数码选择其中的一个使用。比较典型的几种变频器反馈信号通道选择见表 3 。

        6 . P 、 I 、 D 参数的预置与调整

        (1) 比例增益 P

        变频器的 PID 功能是利用目标信号和反馈信号的差值来调节输出频率的,一方面,我们希望目标信号和反馈信号无限接近,即差值很小,从而满足调节的精度:另一方面,我们又希望调节信号具有一定的幅度,以保证调节的灵敏度。解决这一矛盾的方法就是事先将差值信号进行放大。比例增益 P 就是用来设置差值信号的放大系数的。任何一种变频器的参数 P 都给出一个可设置的数值范围,一般在初次调试时, P 可按中间偏大值预置.或者暂时默认出厂值,待设备运转时再按实际情况细调。

        (2) 积分时间

        如上所述.比例增益 P 越大,调节灵敏度越高,但由于传动系统和控制电路都有惯性,调节结果达到最佳值时不能立即停止,导致“超调”,然后反过来调整,再次超调,形成振荡。为此引入积分环节 I ,其效果是,使经过比例增益 P 放大后的差值信号在积分时间内逐渐增大 ( 或减小 ) ,从而减缓其变化速度,防止振荡。但积分时间 I 太长,又会当反馈信号急剧变化时,被控物理量难以迅速恢复。因此, I 的取值与拖动系统的时间常数有关:拖动系统的时间常数较小时,积分时间应短些;拖动系统的时间常数较大时,积分时间应长些。

        (3) 微分时间 D

        微分时间 D 是根据差值信号变化的速率,提前给出一个相应的调节动作,从而缩短了调节时间,克服因积分时间过长而使恢复滞后的缺陷。 D 的取值也与拖动系统的时间常数有关:拖动系统的时间常数较小时,微分时间应短些;反之,拖动系统的时间常数较大时, 微分时间应长些。

        (4)P 、 I 、 D 参数的调整原则

        P 、 I 、 D 参数的预置是相辅相成的,运行现场应根据实际情况进行如下细调:被控物理量在目标值附近振荡,首先加大积分时间 I ,如仍有振荡,可适当减小比例增益 P 。被控物理量在发生变化后难以恢复,首先加大比例增益 P ,如果恢复仍较缓慢,可适当减小积分时间 I ,还可加大微分时间 D 。

中央空调的冷冻泵和冷却泵都是用的变频启动,也用上了PLC,但我不了解它是利用什么信号传给PLC?

       DDC其实是PLC的一种,ddc更加专业,但是PLC应该可以通过专用的软件模块来实现一些专业功能。PLC原来是为了替代继电器而出现的,因此早期的PLC对于模拟量的处理能力很差,调节控制能力也不强。DDC则从出现开始就是为了实现一些特定的控制功能而设计的,因此使用方便,对特定场合功能更强。但现在的PLC已经完全克服了以前的弱点。plc还有一个好处,由于原本就是为工业环境设计的,可靠性和抗干扰能力很强,这点比ddc,尤其是楼宇自控里用的ddc要强不少。

        一般控制分两种,一是过程控制(比如各种温度控制),此类控制一般和时间没多大关系,一种是机械控制,依靠时间来控制(比如流水线等),DDC只能用于过程控制.并且DDC的开关量输出只是继电器,而大部分开关量是晶体管的.由于价格,和环境等因素(楼控中环境要求不高),建议采用比较专业的控制器--DDC。

        中央空调冷冻系统的控制有3种控制方式,早期的继电器控制系统、直接数字式控制器DDC以及PLC(可编程序控制器)控制系统。继电器控制系统由于故障率高,系统复杂,功耗高等明显的缺点已逐渐被人们所淘汰,直接数字式控制器DDC虽然在智能化方面有了很大的发展。但由于DDC其本身的抗干扰能力问题和分级分步式结构的局限性而限制了其应用范围。相反,PLC控制系统以其运行可靠、使用与维护均很方便,抗干扰能力强,适合新型高速网络结构这些显著的优点使其逐步得到广泛的应用。

        DDC其实是PLC的一种,但是DDC更专业一些,好多程序都是固化在DDC里面的,选择的时候要根据DDC的固有的程序模式来和我的实际应用模式相比,如果两种模式一样,可以选用,如果不一样,那就不能选用此种DDC,而PLC就不一样了,只要硬件满足了,软件基本上可以根据具体要求自由编写,也就是说DDC更专业一些,程序可编的范围很小,而PLC可以自由编写。

       DDC叫做直接数字控制器,数字输入,集成度高。功能更强于PLC

       PLC叫做可编程控制器,模拟输入,集成度低于DDC。

       他们都可编写。但DDC是固定模式。

       应该说DDC是PLC的发展版本。虽然这样说不正确,但可以这样理解,呵呵!

       DDC比PLC好用,DDC软件有丰富的控制模块和PLC相比就好比WINDOWS和DOS的区别.而且不少DDC的软件都有PLC模块你可以在这个模块里象PLC那样自由编程不受软件的限制.

中央空调系统原理图什么是中央空调系统

       plc就是可编程控制器,要完成一个闭环控制的话,要给它输入传感器的测量信号(比如水泵控制中常用的是压差设定值)。所以,是压力传感器测得的压力(或压差)数值,一般是以0~10VDC或4~20mA电流信号的形式,输入到plc的。

       这样,plc有了输入信号,根据内部的控制逻辑,进行判断、计算,然后输出控制信号,一般也是0~10VDC或4~20mA电流信号;当然也有用通信信号的(RS485),把控制信号输送给变频器。

       对于闭环的水路来说,变频不改变水泵的效率,通过降低频率,可以减少提供的扬程(流量),从而减少了泵耗。达到节能的目的。

中央空调的实训装置包括几个部分

       中央空调系统原理图带我们了解中央空调的系统内部结构,在空间比较大的场所,大多都是使用中央空调。中央空调系统有主机和末段系统,下面就跟着小编一起来看看中央空调系统原理图以及相关知识。

       中央空调系统的优点

       1、经济节能

       主机由微电脑控制,每个区间末端风机盘管可自行调节温度,区间无人时可关闭,系统根据实际负荷做自动化运行,开机计费,不开机不计费,有效节约能源和运行费用。

       2、环保

       主机采用水源热泵型机组,电制冷,没有燃烧过程,避免了排污;整个系统为密闭式管路系统,可避免霉菌灰尘等杂质对系统的污染,使环境清新优美。

       3、节约空间

       主机体积小巧,不设机房,无需占用设备层,减少公用设施和土建投资,室内末端暗藏在吊顶内,极易配合屋内装修。

       4、个性化

       中央空调系统以区间为单元,满足用户不同区间需求,室内末端安装采用暗藏方式,不影响室内的审美观,不占据室内空间,适应用户的个性化需求。

       5、简化管理

       于采用不同区间单独控制系统为用户所有,产权关系明确,可简化空调设施管理。

       6、提升档次

       中央空调主机可以避免破坏楼体的整体外观,使用户充分享受高档综合环境的同时,提升产品质量及量贩档次。

       中央空调系统原理图

       1、冷(热)水机组的基本工作过程是:室外的制冷(热)机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。

       2、风管(道)式机组的基本工作过程是:供冷时,室外的制冷机组吸收来自室内机组的制冷剂蒸气经压缩、冷凝后向各室内机组输送液体制冷剂。供热时,室外的制冷机组吸收来自冷凝器的制冷剂蒸气经压缩后向各室内机组输送汽体制冷剂。

       3、变频一拖多机组的基本工作过程是:供冷时,室外的制冷机组吸收来自室内机组的制冷剂蒸气经压缩、冷凝后向各室内机组输送液体制冷剂。供热时,室外的制冷机组吸收来自冷凝器的制冷剂蒸气经压缩后向各室内机组输送汽体制冷剂。

       4、机组在能量调节方式上由微电脑控制,室外机组的变频式压缩机根据室内冷热负荷的变化,自动调节压缩机的工作状态,以满足室内冷热负荷的要求。

       现在中央空调的使用率越来越高了,企业以及大型广场都是采用中央空调系统,中央空调适用于大面积,能节省不少的成本,所以有它的市场潜力与市场价值。希望通过中央空调系统原理图,你能了解到你所想知道的。

       中央空调实训装置 ” 是职业教育的教学和实训要求而研制的。适合高职院校、职业学 校的《制冷技术》、《制冷流体机械》、《制冷设备维修工(高级工)》等课程的教学实训装置。培养掌握空调与制冷技术专业理论知识和专业实践技能,从事空调、制冷设备及系统的技术升级、改造设计、安装、调试、维护、维修、技术管理等方面的技能应用型人才。

       实训装置也适合普通院校、技工学校、职业培训学校、职教中心、鉴定站 / 所、制冷类专业《制冷设备 维修工(高级)》、《制冷设备原理与维修》、《制冷空调装置操作安装与维修》、《中央空调工(初级、中级、高级)》、《中央空调系统操作员》等课程。

       二、基本技术指标:

       1. 电源:三相五线 AC 380 V±10% 50Hz ;

       2. 追大供冷量: 7.5kW ;

       3. 追大输入总功率: 6.5kW ;

       4. 制冷额定功率: 3.8kW ;

       5. 制热额定功率: 2.0kW ;

       6. 额定输入电流: 7A ;

       7. 循环风量: 700m 3 /h ;

       8. 制冷剂: R22 ;

       9. 漏电动作电流: ≤30mA ;尺寸: 6000×2400×2500mm 安全保护措施:具有过压、过流、过载、漏电、接地四种保护措施,符合国家相关标准。

       三、各主要部件特点及工作原理

       1 、压缩机;系统采用全封闭活塞式 3P 压缩机,正常工作温度仅为 0 O C ,安全可靠,结构紧凑,噪音低,密封性好,制冷剂为 R22 。

       2 、蒸发器:制冷系统采用干式蒸发器,液体制冷剂经节流后从蒸发器一端的端盖进入管程 , 端盖上铸有隔板 , 制冷剂经过两个或多个流程蒸发并吸收载冷剂的热量后从同一个端盖出来后进入压缩机,以增强制冷效果。

       3 、冷凝器:制冷系统采用壳管式冷凝器,这是一种较新型的热交换设备,用两条平行的铜卷制而成,是具有两个螺旋通道的螺旋体,中间的螺旋体是冷却水通道,外部的螺旋体是高压制冷剂的通道。

       4 、喷淋式冷却塔:该设备的冷凝方式采用逆流式冷却塔,模具一次成形 , 吸风机装在塔的顶部,结构完全仿真、直观;冷却塔采用吸风式强迫通风,塔内填有填充物 , 以提高冷却效果 ; 从冷凝器出来的温水由冷却水泵送入塔顶后 , 又布水器的喷嘴旋转向下喷淋 .

       5 、锅炉:锅炉是中央空调制热系统的核心元件,采用顶格莱电热管使水与电完全隔离,具有超温保护,防干烧保护、超压保护,确保人机安全;采用进口聚氨发泡保温技术,保温性能好。

       6 、模拟房间:外形美观、小巧,占地面积少,结构紧凑;具有全透明结构,一目了然;房间装有盘管,盘管风机、温度控制调节仪。

       7 、温度控制:本设备实验台的面板上,装有温度控制显示仪,可控制温度的范围, 且有巡回检测出各关键部位的温度。

       8 、高、低压保护装置:为安全起见,制冷系统装有高、低压保护继电器可保护压缩机及系统的正常运行。

       9 、水箱:为节约用水循环使用系统的水资源,通过加水箱来完成媒介水的加入、自动调节、过滤等任务;并装有自动加水系统,如果系统水资源缺乏,加水系统会自动启动补给。

       10 、触摸屏部分:采用 7 寸真色彩 MCGS 触摸屏,包含主控窗口、 12 路温度显示窗口、 12 路温度实时曲线图、系统设置窗口、故障设置窗口、调试窗口、帮助窗口、密码修改窗口,登陆键面。

       11 、 PLC 可编程控制器:采用 CPU224 主机模块、 3 套模拟量模块 EM231 及相关继电器,控制开关,指示灯,标准通信接口及配件。

       12 、组态软件:利用组态软件在上位机远程监控中央空调实时运行状态。

       四、控制功能如下:

       ( 1 ) 各关键点温度动态显示, 其中包括

       A 、制热当前值 B 、制冷当前值 C 、锅炉进口 D 、锅炉出口

       E 、冷却塔进口 F 、冷却塔出口 G 、冷凝器进口 H 、冷凝器出口

       I 、蒸发器进口 J 、蒸发器出口 K 、模拟房间 Ⅰ L 、模拟房间 Ⅱ

       ( 2 ) 温度设定及显示温度的设定可在 18 到 30 摄氏度之间进行任意设定。

       ( 3 ) 压缩机的延时设定压缩机的开机延时可在 5-20 分钟之间任意设定

       ( 4 ) 开关控制及指示中央空调各部分的工作与停止均可通过触摸屏进行控制,并且有开关显示, 便于远程操作,设置开关如下:

       A 、冷却水泵 B 、冷却风机 C 、制冷水泵 D 、压缩机 E 、电磁阀 Ⅰ

       F 、电磁阀 Ⅱ G 、制热水泵 H 、制冷 I 、制热 J 、停机

       ( 5 ) 故障设置如下:

       今天的讨论已经涵盖了“基于plc中央空调控制系统”的各个方面。我希望您能够从中获得所需的信息,并利用这些知识在将来的学习和生活中取得更好的成果。如果您有任何问题或需要进一步的讨论,请随时告诉我。